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Proposed mechanism for learning and memory erasure in a white-noise-driven sleeping cortex

Moira L. Steyn-Ross,l’>|< D. A. Steyn-Ross,1 J.W. Sleigh,2 M. T. Wilson,l and Lara C. Wilcocks'

lDeparz‘memf of Physics and Electronic Engineering, Private Bag 3105, University of Waikato, Hamilton, New Zealand

2Department of Anaesthetics, Waikato Hospital, Hamilton, New Zealand
(Received 9 June 2005; revised manuscript received 12 October 2005; published 16 December 2005)

Understanding the structure and purpose of sleep remains one of the grand challenges of neurobiology. Here
we use a mean-field linearized theory of the sleeping cortex to derive statistics for synaptic learning and
memory erasure. The growth in correlated low-frequency high-amplitude voltage fluctuations during slow-
wave sleep (SWS) is characterized by a probability density function that becomes broader and shallower as the
transition into rapid-eye-movement (REM) sleep is approached. At transition, the Shannon information entropy
of the fluctuations is maximized. If we assume Hebbian-learning rules apply to the cortex, then its correlated
response to white-noise stimulation during SWS provides a natural mechanism for a synaptic weight change
that will tend to shut down reverberant neural activity. In contrast, during REM sleep the weights will evolve
in a direction that encourages excitatory activity. These entropy and weight-change predictions lead us to
identify the final portion of deep SWS that occurs immediately prior to transition into REM sleep as a time of
enhanced erasure of labile memory. We draw a link between the sleeping cortex and Landauer’s dissipation
theorem for irreversible computing [R. Landauer, IBM J. Res. Devel. 5, 183 (1961)], arguing that because
information erasure is an irreversible computation, there is an inherent entropy cost as the cortex transits from

SWS into REM sleep.
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I. INTRODUCTION

In a recent paper the authors have presented a simplified
model for the electrical behaviour of a sleeping cortex [1].
Our sleep model uses physiologically realistic parameters
and is a generalization of earlier work that presented a theo-
retical description for the state of forced quiescence brought
about by administration of a general anaesthetic agent [2-6].
The simplifying assumptions common to both models are (i)
the cortex is never far from a homogeneous equilibrium
state; (ii) the cortex is constantly bombarded by a low-level
background of white noise; and (iii) the scalp-measured EEG
(electroencephalogram) or on-cortex ECoG (electrocortico-
gram) signal is proportional to the net soma voltage obtained
by averaging across the spatial extent of the population of
excitatory neurons within a cortical “macrocolumn”—a
small volume (~1 mm?) of cortical tissue containing about
85 000 excitatory and 15 000 inhibitory neurons. Thus this is
a “mean-field” model, since it ignores fine spatial details of
cortical structure. The final assumption is (iv) that although
action potentials (“spikes”) are a defining nonlinearity for
individual neuron communication, these momentary events
can be ignored when modelling at the population level, and
thus it is sufficient to model the effect on overall neural
activity in terms of an average firing rate. Therefore any
synaptic modification that depends on the arrival times of
individual spikes—such as spike-timing plasticity—is be-
yond the scope of our population-based model.

The presumption of near-equilibrium stochasticity means
that we are deliberately focusing on small random fluctua-
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tions about steady state for which linearized theory can be
expected to be valid. However, if the cortex develops an
instability such that small fluctuations grow into large-scale
nonlinear behaviors (e.g., a limit cycle), or if the cortex is
exposed to a specific (i.e., nonrandom) stimulus, then the
response is beyond the region of applicability of our model.
Despite these rather strong restrictions, we have been able to
demonstrate in Ref. [1] that linearized fluctuation theory is
able to make several testable predictions regarding changes
in EEG characteristics as the sleeper cycles from slow-wave
sleep into REM sleep: (1) There will be a strong surge in
electrical activity as REM state is approached; (2) this surge
will show a pronounced redistribution of spectral energy to-
wards zero frequency; (3) the voltage fluctuations will be-
come increasingly correlated in time; (4) these changes are
abruptly reversed in REM: power drops away as the spec-
trum becomes flatter and the correlations disappear. All four
of these EEG-change predictions appear to be consistent
with laboratory recordings of sleeping cat reported by Des-
texhe et al. [7].

In this paper we investigate the noise-driven learning and
memory implications of this abrupt transition from SWS into
REM sleep. Using standard Ornstein-Uhlenbeck [8] theory,
we compute the stationary covariance matrix % (h,,h;) for the
covarying excitatory and inhibitory voltage fluctuations
h,,h;, and write down expressions for P(h,,h;), the bivariate
stationary PDF (probability distribution function), and for H,
the Shannon entropy of these zero-mean fluctuations. If Heb-
bian [9] learning (synaptic reinforcement) occurs during
sleep, then the synaptic weight changes within the cell as-
sembly will tend to align along the direction that maximizes
fluctuation variability (i.e., parallel to the first principal com-
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mined by the altering character of the covariance statistics:
when the excitatory and inhibitory fluctuations are strongly
correlated, the PDF broadens, causing Shannon entropy to be
maximized. By linking Hebb’s cell assembly with Hopfield’s
associative memory network, we propose that these corre-
lated fluctuations in deep SWS provide a prescription for the
weakening and erasure of potentially labile parts of memory.
Conversely, when these cross-population fluctuations are
weakly correlated—as is the case in REM sleep—the PDF
becomes strongly peaked, entropy is minimized, and
memory is expected to be strengthened.

We then relate these ideas to Landauer’s dissipation theo-
rem for irreversible computation, arguing that the transition
to REM sleep is an irreversible erasure process that proceeds
via a gradual state-space expansion and entropy increase in
SWS, followed by an abrupt state-space compression on en-
try into REM sleep.

II. THEORY
A. A continuum model for the noise-driven cortex

Instead of considering the detailed interactions of discrete
nerve cells, we choose to model at the level of the macrocol-
umn, a small volume of cortex containing ~10° excitatory
and inhibitory neurons. We then presume that, to first ap-
proximation, the cortex can be pictured as a homogeneous
collection of interconnected macrocolumns. For the purposes
of modelling the cycles of natural sleep, we argue that this
mean-field or population-based approach can be justified on
two grounds. First, the gross states of vigilence—
wakefulness, slow-wave sleep, REM sleep, and even anaes-
thetic unconsciousness—can be distinguished using a single
EEG scalp electrode, so detailed spatial knowledge is not
essential. Second, these gross brain states are not properties
of individual neurons: rather, these states emerge as coopera-
tive behaviours of large populations of neurons.

This continuum approach has a rich history in neurophysi-
ological modelling [10-18]. Following the recent models of
Wright [19], Liley [20,21], Robinson [22,23], and Rennie
[24] we have developed a set of equations to describe the
time-evolution of the mean excitatory and inhibitory soma
voltages V,,V,, subject to excitatory and inhibitory synaptic
inputs whose activity levels across the sleep cycle are gov-
erned by the varying concentrations of particular neuro-
modulators and “somnogens” (fatigue agents). The full de-
velopment of these equations is given in Ref. [1]. In that
paper we derived a simplified “adiabatic” equation set which
assumes that, relative to the voltage changes that accumulate
at the soma, synaptic-input events are fast and rapidly equili-
brating. This fast-synapse, slow-neuron approximation ap-
pears to give valid descriptions of the major changes in EEG
recorded during induction of anaesthesia and during the
cycles of natural sleep.

Assuming that the cortex is subject to a continuous flux of
low-level white-noise stimulation (originating from sub-
brain structures that are active during sleep), then in the
slow-neuron adiabatic limit the excitatory and inhibitory
soma voltages obey a pair of coupled stochastic differential
(Langevin) equations,
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where the A, ; are drift terms defined by
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(2.2a)

(2.1)

A=V = Vit g (V& = V) + gii- (VT = V)i,
(2.2b)

Viiitis the cell resting voltage for the e, i population, and Vi}
is the synaptic reversal potential: here we take Vi'=0 mV
for AMPA (excitatory) receptors, and V;"'=-70 mV for
GABA (inhibitory) receptors; 7,; is the membrane time-
constant. The four g; coefficients can be thought of as di-
mensionless synaptic conductances, and these depend on
both V, and V,. Their double-subscripting implies a left-to-
right “flow of action,” thus g,, is to be read g;_,,, and indi-
cates the total strength of synaptic flux being transmitted
from inhibitory cells to excitatory cells. Each synaptic-source
term in (2.2) contributes a voltage perturbation that depends
on the product of the conductance g with the deviation of
the cell voltage V; from the relevant reversal potential V;™:
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(2.3b)

where p,; is the synaptic strength [units: mVs], being a
signed measure of the charge transferred across the synapse
per incoming action potential: p,>0 (excitatory event),
p;<<0 (inhibitory event); N ; is the number of incoming
e—k, i— k synaptic connections per cell; ¢z ; is the rate of
spike flux entering from subcortical sources; and Q,; is a
sigmoidal function that maps a cell’s membrane voltage to its
output firing rate.

The T',; diffusion terms of (2.1) are Gaussian-distributed
white-noise sources entering the e,i macrocolumn popula-
tions from the subcortex,

Fe = beeé:l (t) + bie§2(t)’ (243)

=060 + b;;é,(1), (2.4b)

where the four &,(¢) stochastic terms are independent, zero-
mean, delta-correlated white-noise sources:

(&n(1)) =0, (2.5)
<§m(t)§n(t/)>= 5mn5(t_t,)’ (26)
and the by white-noise scale factors are given by
Y -Vi\ o=
b= Pe(—vr:v - Vf“) N i/ Ty (2.7a)
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FIG. 1. (Color online) Distri-
bution of steady-state cortical
voltages over the sleep domain.
The vertical axis is the equilib-

rium excitatory soma voltage V,;

the sleep domain is defined by a

“fatigue” axis AV and a “synap-

tic efficiency” axis N. There are

(2.7b)

Vi'-Vi
b= Pi( VeV _ Viw) \/¢_?lf/7'k-

B. A model for sleep

To bring sleep to this slow-neuron, stochastic model, we
incorporate two neuromodulation effects that operate on time
scales that are vastly slower than the membrane time con-
stants: (a) adenosine fatigue and (b) acetylcholine activation.
(a) During waking hours, adenosine, one of several somno-
gens or “fatigue agents,” steadily accumulates in the cortex
[25]. Then, during subsequent recovery sleep, adenosine con-
centrations slowly diminish. Adenosine acts to decrease cor-
tical activity by increasing a potassium (K*) leak current,
lowering the neuron resting voltage Vi, thus making the
population less likely to fire. [We have focused on adenosine
since it regarded as the archetypal somnogen controlling
sleep homeostasis (self-regulation); however, its modulation
of cell resting voltage could also represent the effect of a
variety of other circadian sleep neuromodulators.] (b) Ace-
tylcholine (ACh) is an excitatory neuromodulator that is
abundant during REM sleep, and absent during other stages
of sleep [25]. Thus we identify REM sleep with periods of
high ACh concentration, and SWS with periods of low ACh.
Acetylcholine activates the cortex by reducing the K* leak
current, so raising Vi and making the cell more excitable.
But in addition to its adenosine-antagonizing excitatory ac-
tion, ACh has the paradoxical effect of simultaneously reduc-
ing the amplitude of the excitatory postsynaptic potential
[26]. In our model, this corresponds to a reduction in p,, the
excitatory synaptic strength. Taking both (a) and (b) into ac-
count, we apply the following adjustment to Eq. (2.2a):

Vzest — Vzﬁsl_i_ szest (2.8)

and introduce a modulation of the excitatory synaptic gain
appearing in the (2.3a) drift and (2.7a) diffusion equations:

three steady-state values for V,
within the green D-shaped region
adjoining the left edge, and single
steady-states elsewhere. We pic-
ture the 90-min sleep cycle as a
clockwise elliptical tour of the
AVI-\ plane, tracing out the ar-
rowed trajectory on the equilib-
rium manifold. The tour com-
mences in SWS at the point
marked (i) (©), moves into deeper
sleep  [(i)— (i) —(iii)], then
makes an abrupt jump transition
(dashed vertical line) from SWS
into REM at (iv) (CJ).

pe - Ape’ (29)

where \ is a dimensionless synaptic scalefactor; an increase
in N corresponds to a decrease in ACh concentration. These
mappings (2.8) and (2.9) define our sleep domain in terms of
a “fatigue” axis AVI™ and a “synaptic-gain” axis \. Because
the neuron resting voltage is affected by both neurochemi-
cals, the position on the AVI™ axis at any given time will
depend on the concentrations of ACh and adenosine.

C. Equilibrium phase space for sleep trajectory

The equilibrium or reference states of the sleeping cortex
are located by setting the time-derivatives and noise terms
in Egs. (2.1) to zero, then solving numerically to find
the stationary membrane voltages V;, as a function of the
sleep-domain parameters AVI™ and \. The resulting 3D
manifold of steady states is displayed in Fig. 1. Although
most of the manifold displays a single equilibrium value
Ve, for AV < +1 mV there is an S-shaped “fold” that con-
tains three steady states. A linear stability analysis predicts
that within this multiroot region, the midbranch root will be
unstable with respect to small perturbations, while the top
and bottom branches will be stable.

Draped over the Fig. 1 manifold we impose an elliptical
tour whose orientation and shape is designed to be qualita-
tively consistent with our picture of the cortical changes ex-
perienced by a sleeper who cycles from SWS to REM and
back. The location marked (®) is at a hyperpolarized, low-
firing position on the bottom branch, presumed to be SWS.

It is not known whether the switchover from SWS to
REM sleep is controlled by the sub-brain—e.g., by activation
of the REM-on cells in the pontine brainstem that release
acetylcholine into the cortex [27], thereby raising the resting
voltage—or is initiated by the cortex itself as adenosine lev-
els drop and the resting voltage rises. Either mechanism
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could cause the elliptical tour to encounter the bottom-
branch turning point, forcing an immediate jump transition
into the cortically-activated state, presumed to be REM,
marked ([]) on the high-firing top branch.

The elevated levels of acetylcholine in REM then lead to
a simultaneous reduction in \ (i.e., reduction in synaptic ef-
ficiency) and increase in V™. At some point, ACh produc-
tion ceases and the hyperpolarizing influence of the residual
adenosine pushes the tour back into deepening stages of
SWS, allowing the cycle to repeat. (Although our proposed
tour forms a closed elliptical cycle, in fact we would expect
the progressive decreases in adenosine to cause the tour to
drift to the right, transforming the ellipse into a 2D “cork-
screw.” We ignore this complication here.)

D. Linearized fluctuation theory: PDF, stationary covariance,
and entropy

Of primary interest is not so much the distribution of
steady states (since population-average membrane potentials
V, ; are not accessible via standard ac-coupled EEG electron-
ics), but rather A, ,(r), the small ac (zero-mean) fluctuations
about these steady states:

he,i(t) = Ve,i(t) - Vz,i

since sleep-stage-induced changes in the A, ; fluctuation sta-
tistics should be detectable in the scalp-measured EEG. Pro-
vided these fluctuations remain small, the Langevin equa-
tions (2.1) can be replaced by their linearized approximation:
a two-variable Ornstein-Uhlenbeck (Brownian motion)

process,
i he _ he J'— ge(t)
dr{hi}‘_"‘[hi]“l){fxr)]

where A and D are time-independent 2 X 2 matrices that vary
as we tour the sleep manifold. A is the drift matrix that
determines the rate at which the cortex relaxes to equilib-
rium; and D is the diffusion matrix that scales &, and &, a
pair of white-noise sources that buffet the excitatory and in-
hibitory neural populations. A is the negative of the Jacobian
matrix formed from the partial derivatives of the A,; drift
terms of Eq. (2.2) evaluated at equilibrium,

(2.10)

(2.11)

0A;
~Ap= —1 (2.12)

av,

eq
and D is the diagonal matrix computed from the covariances
of the I, ; white-noise sources,

o lbﬁﬁbi 0 ]
0 b+ b e

il

(2.13)

As (2.11) is a two-variable Ornstein-Uhlenbeck process,
we may immediately infer that the stationary probability
density function (PDF) is a bivariate Gaussian [28,29]:

P(h,,h;) = N exp[ - h™S"'h], (2.14)

where h=[h,,h,]" is the two-element column vector of EEG
voltage fluctuations, and N is a normalization factor that en-
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sures [P(h)dh=1. The shape and orientation of the PDF is
determined by the stationary covariance matrix X:

2={<h§> <hehi>}=[a§ o-e,-]
ik D | Lo 2

L

(2.15)

Here, for example, (h?) = of is the variance of the excitatory
fluctuations, and {h,h;)=0,=0;, denotes the excitatory-
inhibitory covariance. Following Gardiner [8], because our
Ornstein-Uhlenbeck process is two-dimensional, we may
write an exact expression for the 3 covariance matrix:

_ det(A)D +[A — wr(A)I]D[A — tr(A)T]"
- 2 tr(A)det(A)

p , (2.16)

where I is the 2 X 2 identity matrix; det(-) and tr(-) are deter-
minant and trace operators respectively.

The bivariate PDF of Eq. (2.14) has its maximum at the
origin, (h,,h;)=(0,0); this point corresponds to a given equi-
librium cortical state (V2,V?) on the Fig. 1 sleep manifold.
The “flatness” of the PDF can be quantified via its Shannon
entropy [30] H,

H=- f P(h)In(P(h))dh = In(2me\det ). (2.17)

This entropy is a scalar measure of the range of excitatory
and inhibitory fluctuation amplitudes available to the noise-
driven cortex at a given cortical state. The entropy tracks the
profound changes in the PDF distribution and shape that oc-
cur in the vicinity of the SWS-to-REM sleep transition.

III. THEORETICAL PREDICTIONS AND NUMERICAL
RESULTS

Figure 2 shows the linearized predictions from Egs.
(2.15)—(2.17) for changes in fluctuation statistics over a com-
plete tour around the elliptical sleep trajectory shown in Fig.
1. The transition into REM sleep occurs at cycle=0.097. We
are particularly interested in the abrupt change in behavior as
the cortex crosses from SWS into REM sleep, so we have
selected three points within SWS [points marked (i), (ii), (iii)
on the cycle axis], together with a single point in REM sleep
(at cycle=0.1), for closer examination in Figs. 3-5.

As we move (i) — (ii) — (iii) through deepening SWS to-
wards the transition point into REM sleep, we find that the
power of both the excitatory [af: Fig. 2(a)] and inhibitory
[0'52: Fig. 2(b)] voltage fluctuations are predicted to increase
dramatically, particularly in the immediate vicinity of transi-
tion. This is matched by a corresponding increase in the
cross-fluctuation power, o,; [Fig. 2(c)]. From its definition in
(2.15), we see that o; is a signed quantity. The fact that o, is
positive here means that the %, and h; fluctuations are posi-
tively correlated, so the excitatory and inhibitory fluctuations
will tend to be in phase, with the degree of correlation in-
creasing as the transition point is approached. We can quan-
tify this loss of independence by computing the correlation
coefficient r:
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FIG. 2. Predicted changes in soma-voltage fluctuation statistics for the phase-transition model of the sleep cycle: (a) excitatory variance
ULZ,, (b) inhibitory variance o‘f, (c) excitatory-inhibitory covariance o;, (d) excitatory-inhibitory correlation coefficient r, and (e) Shannon
entropy H for the bivariate probability density function P(h,,h;) (see Fig. 3). The transition into REM sleep at cycle=0.097 is heralded by
a pronounced increase in the white-noise responsiveness of both the excitatory and inhibitory neural populations. Moreover, these fluctuation
responses are predicted to become highly correlated in the vicinity of transition. (The three open circles on the left end of the “Cycle” axis

mark the analysis points for the SWS graphs shown in Figs. 3-5.)

— (3.1)

0.0,

Its variation with sleep phase is shown in Fig. 2(d). The
significant feature is the prediction of perfect correlation
(r— 1) between the h,(z), h,(t) fluctuations immediately prior
to the jump into REM sleep at cycle=0.097.

The origin for these surges in electrical activity near tran-
sition becomes clear when we examine the form of Eq.
(2.16). At transition, the dominant eigenvalue of the drift
matrix A goes to zero. Recalling that the trace of a matrix is
equal to the product of its eigenvalues [31], it follows that

the denominator on the RHS of Eq. (2.16) goes to zero while
the numerator remains finite, and therefore all four elements
of the covariance matrix 3 will diverge at transition. (The
symmetric, smooth power surge seen as the macrocolumn
leaves REM sleep at cycle~=~0.42 arises from the dominant
eigenvalue approaching, but not crossing its zero axis; this
secondary peak is not discussed further in this paper.)
Concommitant with the peaking of fluctuation and cross-
fluctuation activity is the rise in Shannon entropy H [Fig.
2(d)]. Because H quantifies the size of the state-space avail-
able to the macrocolumn, it is clear that, in the period leading
up to transition into REM sleep, there is an expansion in
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(i) SWS ) (ii) SWS

(iii) SWS

FIG. 3. (Color online) Predicted evolution of the bivariate Gaussian probability density function (PDF) for 4, and h; voltage fluctations
(in mV) during deepening SWS [(i), (ii), (iii)] and across the transition into REM sleep (iv). The correlation coefficients for the four PDFs
shown are respectively (i) 0.64, (ii) 0.89, (iii) 0.96, and (iv) 0.30. The elliptical bull’s-eye contour lines mark the boundaries for fluctuation
excursions that are 1, 2, 3, and 4 standard deviations away from the (0, 0) equilibrium point. (Each PDF mesh has been moved upwards by
1.5 density units [(mV)~2] in order to better view the contours.)

state space that occurs at the same time as the growth of  sleep, the excitatory and inhibitory fluctuations are more in-

correlated activity in both the excitatory and inhibitory neu- dependent, and, compared with deep slow-wave sleep, oc-
ral populations. After transition, all five measures plotted in cupy a much smaller state space.
Fig. 2 drop away. Fluctuations are now of smaller amplitude Figure 3 shows the evolution of the fluctuations PDF

and are less correlated. This model suggests that in REM [Eq. (2.14)] at the four points of interest that bracket the
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FIG. 4. (Color online) Numerical simulations of the Langevin equations (2.1) at three points within SWS [(i), (ii), (iii)] and one point in
REM sleep (iv), each trace showing a 5-sec time series of excitatory (h,: black) and inhibitory (h;: red) neural activity. The lower set of traces
is a zoomed view of the upper boxed 1-sec segment. To aid comparison of the altered dynamics, each simulation run was driven by an
identical sequence of 20 000 random numbers [four white-noise generators &,(¢) updated at intervals of Af=1 ms for a simulation time of
5 s]. These nonlinear numerical experiments provide a cross-check against the linearized-theory predictions of Fig. 3. Note that the SWS
approach to REM sleep [ (i) — (ii) — (iii)] is marked by large-amplitude, slow-frequency correlated voltage fluctuations; these slow correlated

fluctuations disappear in REM sleep (iv).

SWS — REM sleep transition. The increase in correlated ac-
tivity during deepening SWS [(i), (ii), (iii)] squeezes the co-
variance contours so that they become distinctly elongated
along the h,=h; in-phase direction. The character of the PDF

(i) SWS (ii) SWS
h,' A h,' A

FIG. 5. (Color online) These h,-vs-h; 5000-point scatter plots
show the point-cloud distribution for the nonlinear simulation volt-
age traces of Fig. 4. Superimposed are the 1-, 2-, and 3-¢ elliptical
countours predicted by the linearized fluctuation theory of Eq.
(2.15). The axis arrows provide an amplitude scale, marking the
interval —1 to +1 mV. The r values are the correlation coefficients
computed from the simulation time series. The agreement between
nonlinear simulation and linear-theory prediction (see caption of
Fig. 3) is very satisfactory.

changes abruptly in REM (iv): the extreme contour elonga-
tions have disappeared, signalling that the /, and A; fluctua-
tions are significantly less correlated. (See also Fig. 1.)

To test the accuracy of the linearised predictions, we ran a
series of 5-sec numerical simulations of the nonlinearized
sleep equations (2.1); the resulting time-series appear in Fig.
4. It is clear that the spectral content and temporal character
of the theoretical EEG patterns are very different in SWS
compared with REM sleep. The SWS [(i), (ii), (iii)] traces
are dominated by large, slow voltage variations that show a
high degree of phase similarity between the excitatory and
inhibitory fluctuations, whereas in REM sleep (iv) the corre-
lated low-frequency content has almost completely disap-
peared.

The scatter plots of Fig. 5 were derived from the nonlin-
ear simulations shown in Fig. 4. Their (co)variances and cor-
relation coefficients show excellent agreement with the the-
oretical predictions of Fig. 3, giving us confidence that our
linearised theory does provide an accurate description of
near-equilibrium fluctuation behavior of the nonlinear
Langevin sleep equations.

Equation (2.4) shows that our cortical circuit is bom-
barded with random stimulation that enters excitatory and
inibitory macrocolumn populations, from both excitatory and
inhibitory subcortical sources, with all four connection pos-
sibilities permitted: e —e, e—i, i—e, i—i. An anonymous
referee has pointed out that the vast majority of input path-
ways from subcortical structures will be of the e —e and
e—i types, so we ran a series of stochastic simulations in
which the number of white-noise sources was reduced from
four to two, with Eq. (2.4) being modified to read

I, =b.& (1), (3.2a)
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Fi = bei§3(t) .

Although fluctuation amplitudes in the two-source case were
lower (as expected, since there is less stimulation energy),
we found no qualitative changes in the simulation behaviors.
As for the four-source experiments reported in this paper, the
two-source runs gave the expected critically-slowed fluctua-
tion response: an increase in low-frequency power and cor-
relation times on approach to the SWS— REM sleep transi-
tion, with abrupt reduction in fluctuation correlations and
amplitude after transition.

Use of white-noise stimulation is mathematically conve-
nient (since it allows us to compute exact statistics for the
linearised fluctuations), but it is probably not a good repre-
sentation for structured subcortical inputs that might arise
from specific sensory stimulus. To simulate the effect of a
structured stimulus we replaced the white-noise drives with
correlated (“pink™) noise generators, varying both the corre-
lation time for each source, and the degree of cross-source
correlation. In all cases, the resulting soma-voltage fluctua-
tions were larger, slower, and more correlated than when
white-noise driving was used, with the degree of correlated
slowing depending on the closeness of the macrocolumn to
the SWS/REM-sleep transition. Because the fluctuations
were larger, there was a much greater probability of an
“early” jump transition from SWS to REM sleep. We con-
clude from these structured-noise tests that the prediction of
critically slowed fluctuations is a general property of the net-
work, and is not an artifact of the choice of stimulus.

(3.2b)

IV. SLOW FLUCTUATIONS AND MEMORY ERASURE

As the slow-wave sleeping cortex approaches transition
into REM sleep, our macrocolumn model shows pronounced
changes in the fluctuation statistics for the excitatory and
inhibitory membrane voltages. We propose that these altered
fluctuation characteristics cause systematic alterations in
synaptic weights that can lead to the unlearning or erasure of
memory. Our argument is based on Hebb’s [9] philosophy
for the imprinting (learning) of memories, and on the influ-
ential work of Hopfield [32] who was the first to present a
mathematical basis for associative memory networks.

A. Synaptic plasticity

One of Hebb’s most enduring postulates asserts that sus-
tained local neural activity causes changes in the strength of
the synaptic connections linking the participating neurons.
Generalising this idea from the local to the population level,
we can construct a hypothetical schematic for the synaptic
weights that set the strength of connections between the ex-
citatory E and inhibitory / populations of the macrocolumn.
As illustrated in Fig. 6, we define four mean-field synaptic
weights: w,, and w;; are self-action terms for the e —e and
i—1 interactions within the excitatory and inhibitory sub-
populations respectively; w,; and w;, are e—i and i—e
cross-weights that give the strength of coupling between the
E and I populations. In our model, the cross weights are
symmetric: w,;=w;,.
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FIG. 6. Mean-field synaptic weights for the linearized macrocol-
umn. The w,, and w;; weights give the coupling strengths within the
E and [ neural populations; the cross weights w,;=w;, determine the
strength of coupling between the E and I populations. The four
circles labeled & represent four independent white-noise stimula-
tion sources originating from the subcortex.

In the spirit of the mean-field approach of Bienenstock
and Lehmann [33], we assume that the population weights
obey a set of Hebbian covariance rules [34], but unlike those
authors who work with instantaneous values for activity co-
variance, we write the learning rules in terms of the steady-
state variances and covariances of the voltage fluctuations in
h, and h;:

Awee = 7]<h§>Al, Awii = ﬂ<h12>At, Awei’ie = 7]<hehl>At
(4.1)

Here 7 is a (small, positive) rate-constant assumed to be
common to all four rules. We can write Eq. (4.1) as an update
rule for the weights matrix W,

AW Awee Awei g Oi A (4 2)
= = t. .
Awie Awii K a; 0'2

1

LI S

Thus the rate of change of the W weights matrix is propor-
tional to X, the Eq. (2.15) covariance matrix for small fluc-
tuations. The assumption of a Hebbian covariance rule im-
plies that the synaptic weights will evolve along the direction
that maximises fluctuation variability, i.e., the weight change
will align itself with the long axis (first principal component)
[35] of the covariance ellipses illustrated in Figs. 3 and 5. As
SWS deepens [(i)— (ii) — (iii)], the h, and h; fluctuations
become more correlated, causing the point-cloud to elongate
along the h,=h; mirror axis: the excitatory-inhibitory corre-
lation coefficient r tends to unity as the two neural popula-
tions increasingly behave as one.

B. Reverberating cell assemblies

Hebb [9] defined a reverberating cell assembly as a col-
lection of neurons whose synaptic connections enable sus-
tained neural activity even after the activating stimulus has
been removed. That is, the stimulus lives on in the assembly
as a reverberation. In our model we consider each stationary
(equilibrium) state of the macrocolumn to be a macrostate
that represents a huge number of equivalent, but unknow-
able, internal activity patterns or microstates. We define a
memory to be any microstate (activity configuration) that,
once stimulated, can persist (reverberate) for some time.

In Hopfield’s [32] theory of associative networks, each
memory is represented as a valley in an energy landscape;
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these valleys act as attractors for the network, with deeper
valleys representing stronger attractors and more easily re-
called memories [36]. By design, our macrocolumn model
has no knowledge of its detailed internal structure, so we
cannot identify its memories. However, we can glean some
knowledge of the overall strength of the family of memories
held within a given macrostate by probing its responsiveness
to random noise: if a small perturbation produces a small
response, then the fluctuations PDF will be narrow and
highly peaked [e.g., see Fig. 3(iv)], indicating that the
population-average attractor is strong and well-localized
about the equilibrium point. At the opposite extreme, if a
small perturbation produces an exaggeratedly large fluctua-
tion response [e.g., Fig. 3(iii)], the PDF will be broad, cor-
responding to a weakened attractor that is only diffusely
located at equilibrium. Thus, in the Hopfield interpretation,
the fluctuation response in deep SWS (i.e., close to the
SWS —REM-sleep boundary) is consistent with weakened
or erased memory.

From a Hebbian-plasticity viewpoint (see Sec. IV A) we
expect that the coupling between excitatory and inhibitory
populations will be strengthened by the increasingly corre-
lated fluctuations exhibited during the approach to the SWS-
to-REM sleep transition. The net effect of this tight cross-
coupling will be to severely weaken network reverberations,
since an excitatory event will stimulate prompt inhibition
that will feed back to damp out the excitation. We conclude
that, irrespective of whether we view the macrocolumn as a
Hebbian cell assembly or a Hopfield associative network,
deep SWS is a time of suppressed reverberation and weak-
ened memory.

This situation is reversed following the abrupt transition
into REM [see panel (iv) of Figs. 3-5]. The slow, large-
amplitude, highly correlated fluctuations of deep SWS are
replaced by excitatory and inhibitory variations that are
faster, smaller, and less correlated (i.e., more independent),
as indicated by covariance contours that are more circular.
At this point in REM sleep we find that the o,; covariance
is much smaller than the individual population variances
(0?~=5.40,, o?=2.10,). Applying Hebbian rule (4.2) here
shows that the w,,; ;, anti-reverberatory weight change will be
swamped by the combined reverberatory effects of growth in
w,, and w;;. (A w;; increase implies that the inhibitory popu-
lation will become more inhibited, so will exert a weaker
moderating influence on the excitatory population.) We con-
clude that REM sleep is a time when reverberant memory is
reinforced, but because the fluctuation variances are smaller,
the rate of weight change during REM sleep will be consid-
erably slower than for deep SWS.

V. DISCUSSION

In this paper we have described a model for memory era-
sure in terms of Hebbian-induced synaptic weight changes
that will tend to suppress reverberation as the sleeping cortex
approaches the SWS-to-REM sleep transition. We can glean
a deeper insight into this transition by regarding the cortex as
a biological computer that, in a sufficiently abstract sense,
might be expected to conform to some of the general prin-
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ciples of computing and information processing. We now
consider the entropy and energy implications of information
erasure, as interpreted in a landmark paper by Landauer, then
relate his findings to our sleeping cortex model.

In 1961 Landauer [37] proposed a general thermodynamic
principle of computing, later elaborated by Bennett [38]. We
will state his principle in two parts, and will refer to it as
Landauer’s dissipation theorem (LDT).

(1) Any computation step that is logically irreversible has
an irreducible entropy cost associated with it.

(2) When implemented in a physical device (a computer),
logical irreversibility implies physical irreversibility, result-
ing in an irreducible energy dissipation proportional to the
entropy change.

A reversible operation retains sufficient information in its
outputs to enable reconstruction of its inputs. For example,
NOT (logical negation) and EXCLUSIVE OR are logically re-
versible since each forms a one-to-one mapping from input
to output that conserves the entropy of the bit pattern. In
contrast, a logically irreversible operation discards informa-
tion by forming a many-to-one mapping from input to out-
put, making it is impossible to reconstruct unambiguously
the input state from the output state. Thus, in a device con-
taining N binary elements, the erasure operations SET TO
ZERO and SET TO ONE are both many-to-one mappings that
take 2V possible input states and map these to a single bit
pattern, resulting in an entropy reduction AS=k log 2"
—klog 2°=kNlog2. When implemented on a computer,
LDT asserts that the erasure will cause a quantity of heat
AQ=TAS to be dissipated to the environment. (k is Boltz-
mann’s constant; 7 is absolute temperature).

Landauer distinguished between two broad classes of
bistable computing devices which we will characterize as
static and active. Static devices, such as ferrites, ferroelec-
trics, and magnetic films, can hold information without dis-
sipating energy. Active devices, such as relays, electronic
flip-flops, and dynamic read-write memory, rely on continu-
ous energy dissipation to maintain steady state. Landauer’s
theorem is presumed to apply to both classes. For the class of
active bistable devices, LDT quantifies the additional dissi-
pation caused by irreversible switching events. It is very
clear that the biological system is not dissipationless, even at
“steady state.” First, each firing of an action potential re-
leases ~10"'kT units of energy [38]. Second, even the non-
firing hyperpolarized state requires a continuous expenditure
of metabolic energy via ion pumps to maintain the ionic
concentration gradients across the cell membrane. Thus the
macrocolumn may be grouped with Landauer’s class of ac-
tive bistable devices.

Bennett [38] explored the connection between logical and
thermodynamic irreversibility using a one-molecule gas
whose location within its container, left or right, was mea-
sured by a device referred to as “Maxwell’s demon.” Bennett
described the essential steps required in order for the demon
to erase its knowledge of the location of the molecule: first,
there must be an expansion (entropy increase) of the mol-
ecule’s phase space as the molecule is allowed once again to
occupy the full volume of its container; and second, there
must be a compression (entropy decrease) of the occupied
volume of the demon’s phase space in order to restore the
demon to its standard (zero memory) state.
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In order to apply the ideas of Landauer and Bennett to the
cortical computer, we will impose a crude binary discipline
to the macrocolumn: let the ZERO state of the macrocolumn
be the hyperpolarized (nonfiring) state, and the ONE state the
depolarized (high-firing) state. If we identify slow-wave
sleep as the ZERO state, and REM sleep as the ONE state, then
we can regard the SWS— REM-sleep transition is an irre-
versible erasure operation that proceeds via a gradual state-
space expansion (“forget”) followed by an abrupt compres-
sion (“set”), as summarized in the following state-transition
map:

ZERO state EXPANDED state ONE state

SWS (transition) REM
Vi

0o 1 o 1 0 1

[The three shaded elliptical regions are miniatures of
the point-clouds and 3-o contours for SWS(i), SWS(iii), and
REM(iv) copied from Fig. 5.] In our sleep model, the erasure
occurs during the expansion of the fluctuations phase space
[e.g., (i) — (ii) — (iii) of Figs. 3 and 5], and is completed by
the phase-space compression immediately following the
jump into REM sleep [at (iv) of Figs. 3 and 5]. Biophysi-
cally, the “forgetting” is the suppression of reverberations
resulting from Hebbian plasticity at the synapses: the growth
in correlated activity between excitatory and inhibitory neu-
ral populations during the expansion phase will tend to in-
crease the inhibitory synaptic weights. Computationally, the
forgetting is represented by the increase in entropy as the
macrocolumn explores larger regions of its phase space.
What is being erased or “forgotten” during slow-wave
sleep? Crick and Mitchison [39] noted that associative net-
works can become overloaded when an attempt is made to
store too many patterns, resulting in the subsequent recall of
an inappropriate response to a given input stimulus. Having
classified these undesirable interactions as unwanted or
“parasitic” modes, Crick and Mitchison gave a three-step
algorithm for their elimination: (1) the system (cortex)
should be isolated from its major inputs; (2) it should be
driven by random activations that excite any incipient para-
sitic modes; and (3) these spurious modes should be damped
down via some (unspecified) “unlearning” mechanism. Crick
and Mitchison conjectured that REM sleep might provide
this essential parasitic-cleansing function. Our model sug-
gests that SWS provides a much better substrate for memory
erasure: the cortex is disconnected from structured stimulus;
the subcortical white-noise driving will tend to excite any
memory that is evoked by unstructured input; these memo-
ries will be suppressed by a Hebbian “unlearning” rule that
strengthens naturally as SWS deepens and excitatory-
inhibitory fluctuations become more highly correlated.
There is clinical evidence that slow correlated electrical
activity in the cortex interferes with normal memory func-
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tion. During the induction of general anaesthesia, scalp-
measured EEG shows a diffuse increase in low-frequency
(e.g., delta band: 1-3.5 Hz) fluctuations [40] that exhibit
strong coherence between separated frontal electrodes [41].
Clinicians have reported that when patients are presented
with verbal learning tasks during induction, they display a
marked reduction in short term memory capacity, and this
deficit is apparent for some minutes following recovery of
consciousness [42,43]: a patient can maintain a lucid conver-
sation at recovery, but have no memory of it 30 min later.
Other amnesic states that are caused by disease (e.g., the
postictal state following epileptic seizure) or by anticholin-
ergic drugs (e.g., hyoscine) are almost invariably associated
with enhanced delta-band activity in the EEG. Conversely,
procholinergic drugs—which cause a shift to REM-like high-
frequency uncorrelated EEG—are commonly used to im-
prove memory function in patients with Alzheimer’s disease.

We need to point out that our equilibrium theory for sleep
ignores the fact that deep SWS has a dynamic structure [44]
in which the cortex slowly cycles between hyperpolarized
quiescence (the “down” state) and depolarized high-firing ac-
tivity (the “up” state), with these activity cycles occurring on
a time-scale of <1 s; this is Steriade’s “slow oscillation.”
However, if each “down”-to-“up” transition within SWS can
be thought of as a short-lived SWS-to-REM state change,
then it is conceivable that the slow oscillation drives cyclic
changes of synaptic weights, with each oscillation defining a
miniature erasure-consolidation cycle.

We acknowledge that our working definition of “memory”
is rather abstract, and that our model ignores the complex
neurobiological processes of acquisition, consolidation, en-
hancement and recall. Although the role that sleep may (or
may not) play in these processes remains a matter of active
research and vigorous debate [45,46], it is clear that consoli-
dation requires integration of a new memory within the con-
text of an existing set—a process that is likely to involve
erasure of the weaker, more labile components of the
memory [47].

In conclusion, our model describes a mechanism by
which the large, slow, correlated voltage fluctuations in the
cerebral cortex seen during SWS can result in the loss of
short-term labile memory. This prediction of memory erasure
is consistent not only with clinical observations of the SWS-
like state that follows anaesthesia or seizure (described
above), but also with the profound short-term amnesia exhib-
ited by subjects transiently awakened after 10 minutes of
sleep [48]. The possible significance of SWS-induced erasure
with respect to longer-term memories has yet to be
established.
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